

Anticipate Risk with the Value and Trade Flows Knowledge Graph

Felix Engel, Mark Vanin, Nenad Krdzavac

{Felix.Engel, Mark.Vanin, Nenad.Krdzavac}@tib.eu

TIB - Technische Informationsbibliothek, Hannover, DE

27.05.2024.

Agenda

Introduction and Motivation

State of the Art

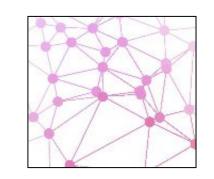
Research Questions

Value and Trade Flows Knowledge Graph

Federated Query Against the VTF and BACI Knowledge Graphs

Implementation REST API

Reference


- This work is contribution to the Cognitive Economy Intelligence Platform for the Resilience of Economic Ecosystem (CoyPu) project.
 - **Motivation:** Supply chains in a global industry and economy are fragile objects
 - Objective: intelligent platform for integrating, structuring, networking, analysing and evaluating heterogeneous data from economic value creation networks, the industry environment and the social context.
- Global production processes
 - Highly dependent on the resilience of global supply chains [1]
 - The Economic Cooperation and Development (OECD) recognizes four keys to resilient supply chains [10]
 - Key 1: To anticipate risks
 - Key 2: Apply domestic tools to **minimize exposure** to risk
 - Key 3: Apply public-private tools to **build trust**
 - Key 4: Apply international tools to keep market open
- The need to implement solutions that strengthen the resilience of supply chains
 - A key action: **Standardized exchange** of data [9]
 - Example: Information exchange in semiconductor supply chains [12]

State of the Art Global supply chain databases

- World Input-Output Database (WIOD) consists of a number of databases about supply chains that cover 28 EU countries and 15 other countries [4]
- Eora Global Supply Chain Database contains data about inter-sectoral transfers amongst 15,909 sectors across 190 countries [5]
- Global Trade Analysis Project (GTAP) is a global network of researchers which use analytical models to study global supply chains
 [6]

Global supply chain databases

Trade in Value Added (TiVA) indicators

- Monitor countries' integration into global supply chains [2]
- Guide to OECD TiVA indicators (see Table 1) [15]
- Mappings between TiVA industry sector classifications and Standard Industrial Classification of all Economic Activities (ISIC) Rev. 4
- Tree structure of four dimensional TiVA indicators is available on GitLab [14]

• Trade Flows at Product Level (BACI) [3]

- Publishes data on bilateral trade flows at product level
- There are n-ary relations between entities
- Contains information on
 - Product names
 - Harmonized System (HS) nomenclature for trade
 - Export and import country codes
 - Unit of measure
 - Trade value

• Motivation to use TiVA and BACI databases

- License model
- · Both databases have key information in common
- Both databases are extensive
- Both databases share information about import and export trade locations

indicator code name	fdva_bsci	exgr_bsci	imgr_bsci	fd_exgr_va	exgr_dva
number of dimensions	4	4	4	4	3
value added origin	(C,I)	(C,I)	(C)	(C)	
exports		(C,I)	(C,I)	(C,I)	(C,I)
imports			(C)		(I)
final demand	(C,I)			(C)	
value	USD	USD	USD	USD	USD
year	2018	2018	2018	2018	2018

Table 1. Selected TiVA indicators with four and three dimensions

Application knowledge graphs in supply chain resilience

- A knowledge graph-based risk management framework (SCRM) [16]
 - Application KG in supply chain resilience
 - Monitoring risks and long-term disruptions (see Figure 1)
 - Constructed knowledge graph contains 2.5 million entities
- Knowledge graph completion methods are used to predict missing information and identify critical entities in the supply network [17]

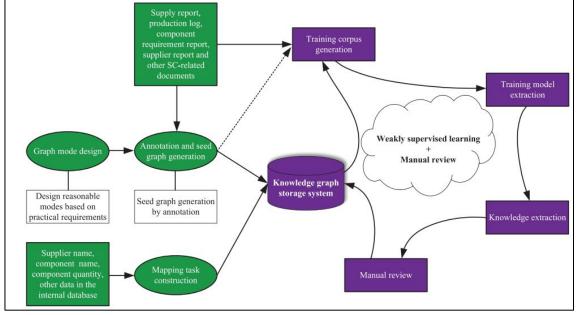


Figure 1. SC-KG framework [16]

N-ary relation design pattern

- OWL does not support n-ary relations [13]
- N-ary relation example (borrowed from [13]): Christine has breast tumor with high probability. (see Figure 2)

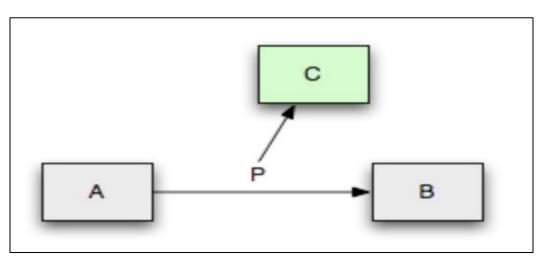


Figure 2. Additional attribute to describe binary relation [13]

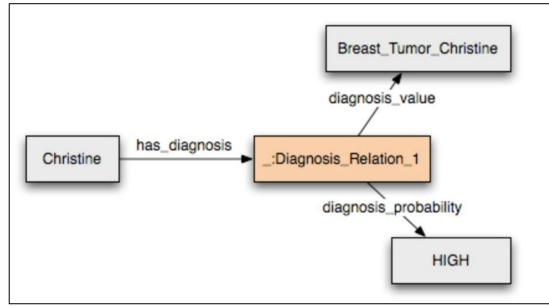


Figure 3. A n-ary relation model using binary relations [13]

- Describe companies and their supply network, employees, products, production materials, industries, events and relations.
- Online available at <u>https://schema.coypu.org/global/2.3</u>

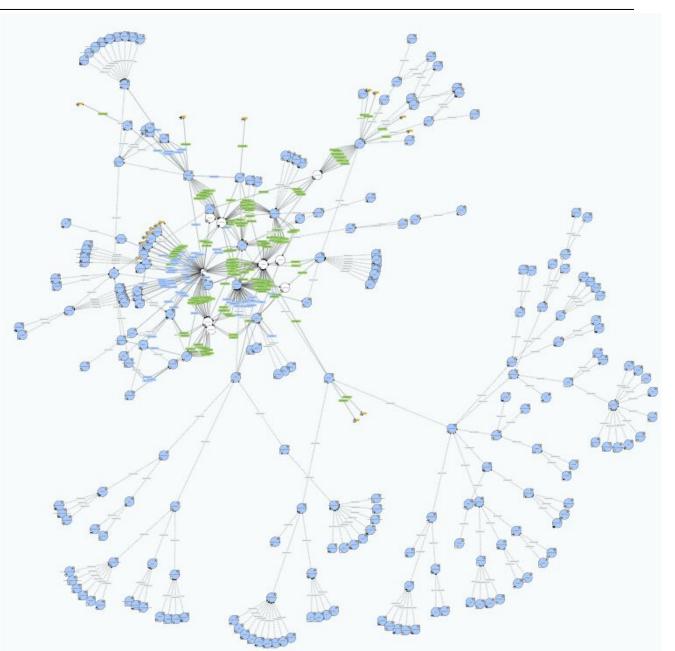
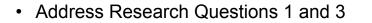


Figure 4. COY ontology - SC4EU view: <u>https://service.tib.eu/ocp/</u>

Research Questions

- Global supply chain databases such as TiVA and BACI are not interconnected, but share some metadata
- Global supply databases are in CSV files. They can not be shared between various computational tools
- Global supply chain databases lack advanced analytical capabilities
 - Using knowledge graphs for semantic data integration
 - Sharing data across the various computational tools employed in resilience analytics


Research Question 1: Can we apply n-ary relations to overcome the challenge of developing a model that integrates existing data sources related to supply chains?

Research Question 2: How can federated querying be leveraged to efficiently retrieve information from the integrated ontology model concerning global supply chains?

Research Question 3: How do we ensure interoperability between different industry classification standards used in these data sources?

- The VTF Knowledge Graph contains
 - The VTF ontology
 - The TiVA and the ISIC Rev. 4 industry code thesauruses, and the mappings between them
 - Individual assertions of VTF ontology derived from TiVA CSV files available at [7]
 - The TiVA KG SPARQL endpoint is available at <u>https://tiva.coypu.org/tiva</u>
 - The VTF KG contains 1128749054 triples

- Addresses Research Question 1
- Generic trade and value flow model, tailored and applied to TiVA and BACI databases
- Applies **n** ary relations ontology design pattern to model domestic value added content of gross exports (exgr_dva code name)
- Serves as a schema for TiVA and BACI knowledge graphs
- Online available
 - Raw file: https://schema.coypu.org/vtf/1.4.ttl

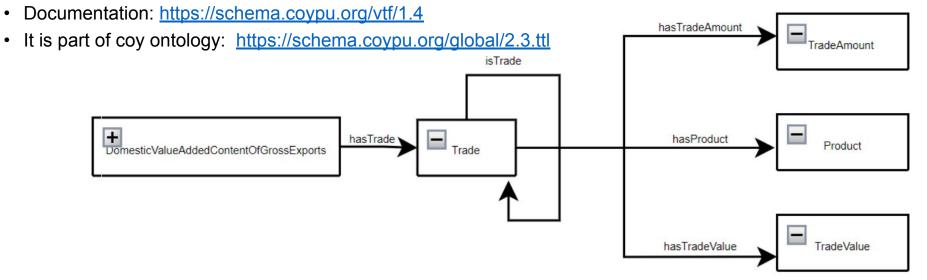
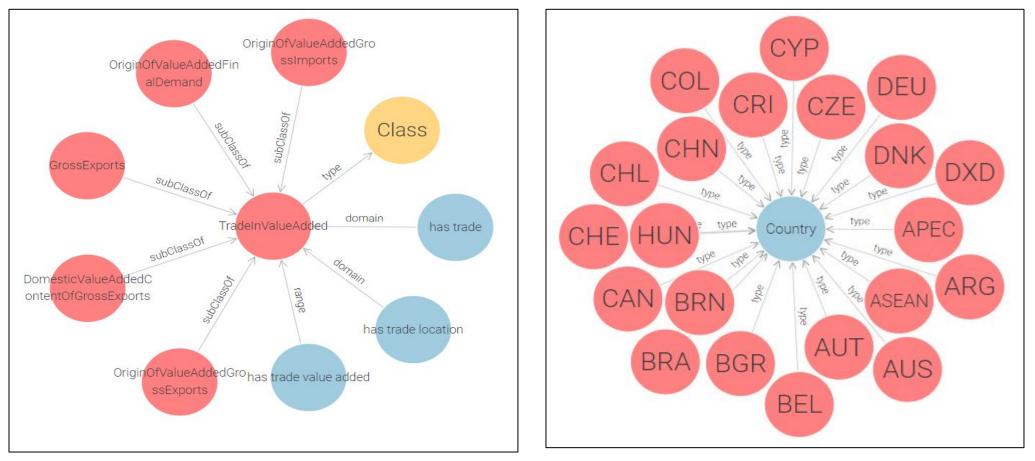


Figure 5. Modeling domestic value added content of gross exports (exgr_dva code name) using n-ary relation ontology design pattern

VTF ontology visualisation



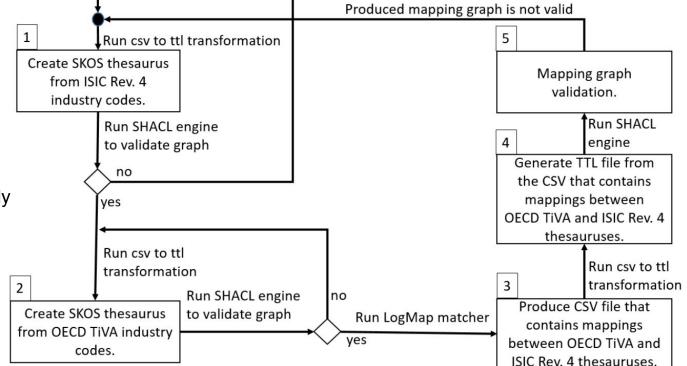
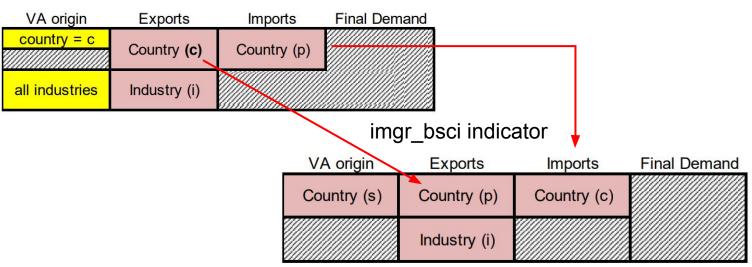

Figure 6. A snapshot of the VTF ontology

Figure 7. Country codes in VTF ontology (instantiation)

TiVA and ISIC rev. 4 industry code mapping

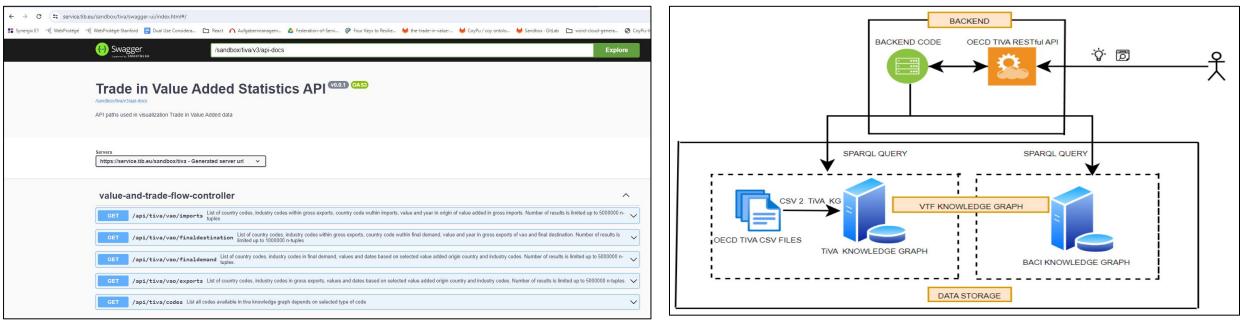
- Address Research Question 3
- Mapping input:
 - The TiVA industry sector codes thesaurus
 - The ISIC Rev. 4 industry sector codes thesaurus
- Automatically produced mapping between these two thesauruses
 - It can be used to produce and validate mappings between any other industry codes that are not explicitly given
 - Industry sector codes may change over time and this generic solution can be used to produce and validate mappings
 - Implementation available in [11]


Figure 8. The ontology development workflow for the ISIC Rev. 4 and the TiVA industry sector codes

Federated query against TiVA and BACI KG

- Address Research Question 2
- Executed programmatically against TiVA and BACI SPARQL endpoints
 - TiVA KG: Origin of value added in gross imports (imgr_bsci) four dimensional indicator
 - BACI KG (CoyPu partners): Domestic value added content of gross exports (exgr_dva) three dimensional indicator
- Export and import trade locations in TiVA KG must match import and export trade locations of exgr_dva indicator available in BACI KG
- Resulting JSON object contains
 - Import value
 - Import year
 - Export trade location
 - Import location
 - Product name (label)
 - Product code
 - Quality value
 - Year of trade

•



exgr_dva indicator

Figure 9. Links between 4-dimensional imgr_bsci and 3-dimensional exgr_dva indicators

Implementation REST API

Figure 10. Swagger page to query VTF KG: <u>https://service.tib.eu/sandbox/tiva/swagger-ui/index.html#/</u>

Figure 11. Pipeline to query VTF KG

THANKS

The research has received funding from the Federal Ministry for Economic Affairs and Energy of Germany in the project Cognitive Economy Intelligence Plattform für die Resilienz wirtschaftlicher Ökosysteme - CoyPu (project number 01MK21007[A-L]).

Reference

[1] R. C. Johnson, G. Noguera, A portrait of trade in value-added over four decades, The Review of Economics and Statistics 99 (2017) 896–911. doi:10.1162/REST_a_00665.

[2] OECD Statistics Working Papers, Last accessed on 15.05.2024. URL: https://www.oecd-ilibrary.org/economics/nowcasting-trade-in-value-added-indicators_00f8aff7-en [3] G. Gaulier, S. Zignago, BACI: International Trade Database at the Product-Level. The 1994-2007 Version, Working Papers 2010-23, CEPII, 2010. URL:

http://www.cepii.fr/CEPII/en/publications/wp/abstract.asp?NoDoc=2726

[4] World Input-Output Database (WIOD), Accessed 20.05.2024. URL: https://www.rug.nl/ggdc/valuechain/wiod/wiod-2016-release

[5] Eora Global Supply Chain Database. Last accessed 20.05.2024. URL: https://worldmrio.com/

[6] Global Trade Analysis Project (GTAP). Last accessed 20.05.2024. URL: https://www.gtap.agecon.purdue.edu/

[7] Trade in Value Added (TiVA) Indicators. Last accessed 20.05.2024. URL: https://stats.oecd.org/DownloadFiles.aspx?HideTopMenu=yes&DatasetCode=TIVA_2021_C1

[8] Trade at Product Level (BACI). Last accessed 20.05.2024. URL: http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele_item.asp?id=37

[9] Risk management tools: Anticipate risks Determine government role.Last accessed 24.05.2024. URL:

https://www.oecd.org/trade/resilient-supply-chains/determine-government-role/

[10] OECD's resilient supply chain. Last accessed 20.05.2024. URL: https://www.oecd.org/trade/resilient-supply-chains/

[11] Mappings implementation. Last accessed 20.05.2024. URL: https://gitlab.com/coypu-project/coy-ontology/-/tree/main/ontology/mapping

[12] Chen, Tai-Lin, Chiunsin Lin, and Pao-Long Chang. "An agent-based framework for information exchange in semiconductor supply chains." International Journal of Services Technology and Management 4, no. 4-6 (2003): 347-364.URL: https://doi.org/10.1504/IJSTM.2003.003620

[13] N-ary relations pattern. Last accessed 20.05.2024.URL: https://www.w3.org/TR/swbp-n-aryRelations/

[14] TiVA indicators tree structure.Last accessed 20.05.2024. URL: <u>https://gitlab.com/coypu-project/coy-ontology/-/tree/main/ontology/indicators</u>

[15] Guide to TiVA indicators. Last accessed 20.05.2024. URL: https://www.oecd-ilibrary.org/science-and-technology/guide-to-oecd-tiva-indicators-2021-edition_58aa22b1-en

[16] Y. Yang, C. Peng, E.-Z. Cao, W. Zou, Building resilience in supply chains: A knowledge graph-based risk management framework, IEEE Transactions on Computational Social Systems (2023) 1–9. doi:10.1109/TCSS.2023.3334768.

[17] Y. Liu, B. He, M. Hildebrandt, M. Buchner, D. Inzko, R. Wernert, E. Weigel, D. Beyer, M. Berbalk, V. Tresp, A knowledge graph perspective on supply chain resilience, arXiv preprint arXiv:2305.08506 (2023).