

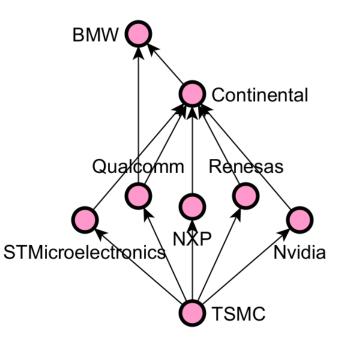
D2R2'24: Third International Workshop on Linked Data-driven Resilience Research, 27.05.2024

Towards Modeling the Structure of Product Dependencies in Supply Networks to Identify Bottlenecks Among Suppliers

Daniel Henselmann, Andreas Harth

Agenda

- 1. Motivation
- 2. Supply Network Graph Model
- 3. Ontology
- 4. Limitations and Conclusion

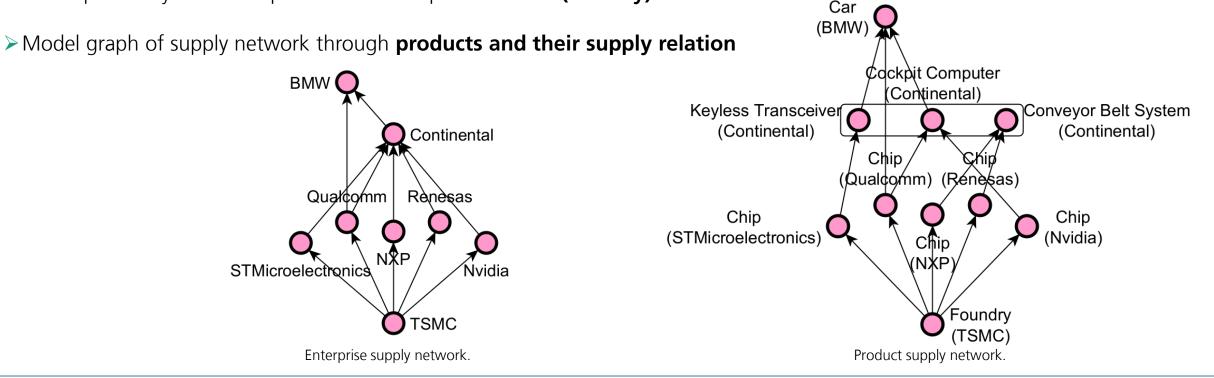


Motivation

- Global chip shortage in 2021 forced car manufacturers to halt production
- One reason were bottlenecks in the supply networks of microchips

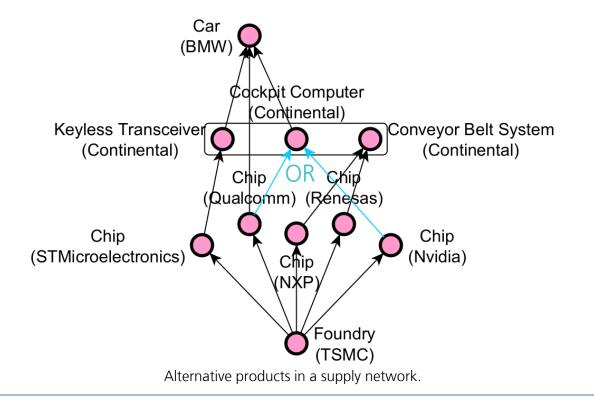
- Bottlenecks are suppliers with the highest loss contributions in consequence of a disruption, resulting in a high dependency
- Disruptions in supply networks increase(d)

- Bottlenecks occur due to the structure of supply networks
- Provide a graph model representing the structure of supply networks as a basis for network metrics to identify bottlenecks



TSMC as a bottleneck in BMW's supply network.

Choice of Supply Network Graph Model 1/2


- One could model the graph of a supply network through enterprises
- The dependency relationships between enterprises are **not (entirely) transitive**

Choice of Supply Network Graph Model 2/2

- The **relation between a product and its enterprise** enables to identify suppliers
- Alternative products affect dependencies
- > Model **knowledge graph** of supply network with an **ontology**

Ontology Methodology 1/3

Comparison with ontology with the greatest overlap of scope from related work (PRONTO [1])

- Make ontology usable for a wider audience beyond ontologists
- Reduce amount and complexity of data required
- > Particular focus on **conciseness** (minimal number of vocabulary terms and avoidance of redundancy)

[1] M. Vegetti, H. Leone, G. Henning, PRONTO: An ontology for comprehensive and consistent representation of product information, Engineering Applications of Artificial Intelligence 24 (2011) 1305–1327. doi:10.1016/j.engappai.2011.02.014.

Ontology Methodology 2/3

Competency questions

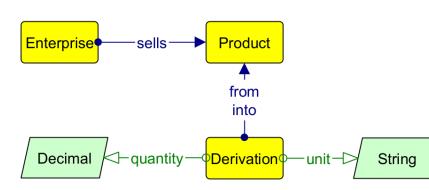
Support the identification of bottlenecks among suppliers by providing data on a supply network

- How many derivational dependency paths from a product to another certain product are there in a supply network?
- How many/much of a certain product does the creation of a product require across the supply network?
- Which enterprise sells a certain product in the supply network?

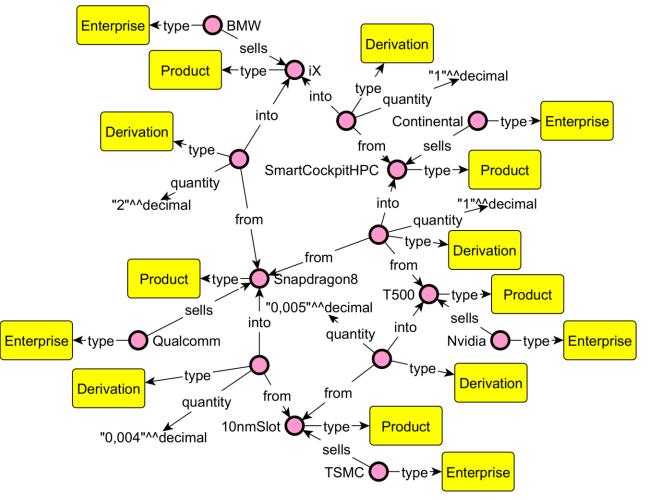
Ontology Methodology 3/3

Modeling requirements

- Provide a representation of products that are available for (potential) customers.
- Provide a representation of the enterprise that sells a product.
- Provide a representation of derivational dependencies between products of different enterprises, specifically all dependencies where a product is (partially) consumed in the process of creating another product.
- Provide a representation of the quantity of a dependency.
- Provide a representation of a derivational dependency being split between alternative products.


Ontology Considerations

Abstraction levels of the product class from related work


- Product model vs. product instance ("a BMW iX" vs. "that blue BMW iX over there in the corner")
- Product vs. product class ("BMW iX" vs. "car")
- Product vs. product group/family ("BMW iX, superior edition, 1.8 TDI, ..." vs. "BMW iX")

Ontology Result

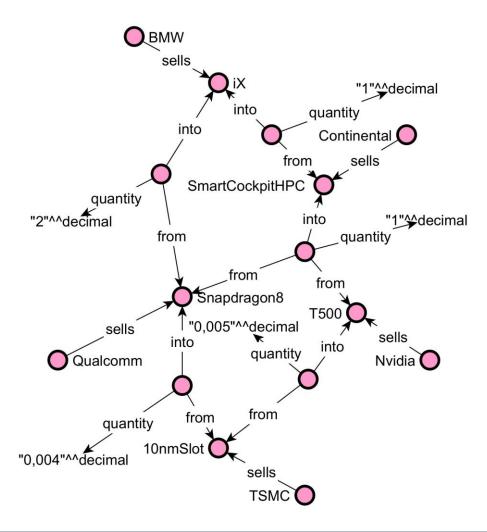
Resulting ontology after considering concepts from related work.

Instance data for a part of BMW's iX supply network.

Ontology Evaluation 1/2

Concise ontology

Metric	Our ontology	PRONTO
Number of classes	3	35
Number of relationships	3	43
Number of leaf classes	3	25
Number of root classes	3	10
Relationship richness	3/3 = 1.0	17/43 = 0.4
Inheritance richness	0/3 = 0.0	26/35 = 0.74
Depth of subsumption hierarchy	0	3
Attribute richness	2/3 = 0.67	6/35 = 0.17


Metrics regarding ontology complexity compared with PRONTO .

Ontology Evaluation 2/2

Competency questions

- How many derivational dependency paths from a product to another certain product are there in a supply network?
- How many/much of a certain product does the creation of a product require across the supply network?
- Which enterprise sells a certain product in the supply network?

Limitations

- The expressiveness of our concise ontology is naturally limited compared to heavyweight ontologies like PRONTO
- The paper does not answer which network metrics to use for identifying bottlenecks
 - How to execute the calculation of metrics (with queries)?
 - How to weight and aggregate weights regarding alternative products?
 - How to determine weights if a product is only occasionally required for a variant?
 - How to consider overlapping supply networks?

Conclusion

- Ontology representing supply networks of products with derivational dependencies between them to identify bottlenecks among suppliers
- The ontology is concise and considers various concepts and definitions from existing ontologies
- Compared the ontology to PRONTO, an ontology with a similar scope

SPONSORED BY THE

Supported by:

Federal Ministry for Economic Affairs and Climate Action

Daniel Henselmann daniel.henselmann@iis.fraunhofer.de

